

Published on Web 06/24/2009

Organocatalytic Asymmetric Formal [3 + 2] Cycloaddition with in Situ-Generated *N*-Carbamoyl Nitrones

Claudio Gioia, Francesco Fini,* Andrea Mazzanti, Luca Bernardi,* and Alfredo Ricci

Department of Organic Chemistry "A. Mangini", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy

Received March 27, 2009; E-mail: fini_f@libero.it; nacca@ms.fci.unibo.it

The [3 + 2] cycloaddition of nitrones and alkenes is one of the most versatile reactions in organic synthesis.¹ It offers the possibility of generating isoxazolidines with up to three new contiguous stereocenters, which are precursors of broadly useful compounds such as 1,3-aminoalcohols, amino acids, azasugars, and alkaloids.² Although several catalytic asymmetric versions of this powerful cycloaddition reaction have been developed,³ all of them invariably involve N-benzyl- and N-aryl-substituted nitrones and thus yield isoxazolidines bearing nitrogen protecting groups that are very difficult to remove without concomitant cleavage of the N-O bond.⁴ The unfeasibility of the preparation of unprotected isoxazolidines for further elaborations is a significant limitation of these otherwise exceptional methods, given the biological interest in these heterocycles.⁵ On the other hand, a few contributions in the literature have reported nitrones bearing easily removable electron-withdrawing groups at nitrogen that can be generated in situ for use in nonasymmetric 1,3-cycloadditions,⁶ overcoming the troublesome isolation of these unstable dipoles.

On the basis of the recently reported in situ generation of *N*-carbamoyl imines by means of phase-transfer catalysis (PTC),⁷ we envisioned a novel asymmetric formal [3 + 2] nitrone cycloaddition reaction⁸ using *N*-Boc- and *N*-Cbz-protected *N*-hydroxy- α -amido sulfones^{6c} (1 and 2, respectively) as nitrone precursors (Scheme 1). Glutaconates **3** were selected as suitable reaction partners for the formation of formal anionic dipolarophiles. We expected that highly reactive *N*-carbamoyl nitrones **A** could be formed in situ and undergo an enantioselective Mannich addition by the chiral quaternary ammonium enolate **B**. The resulting anionic adducts **C** should then directly cyclize intramolecularly to the cycloadducts **D**, possibly diastereose-lectively, affording isoxazolidines **4** and **5**.

Scheme 1. Reaction Pathway

Preliminary experiments on the reaction between sulfone **1a** and dimethyl glutaconate **3a** using *Cinchona* alkaloid-derived ammonium salts revealed that alkylation or acylation at the alcoholic moiety of the catalyst had a very positive effect on the observed asymmetric induction.⁹ In particular, useful enantioselectivities could be obtained by using quinine-derived catalysts such as **6a**–**d** (Table 1), which bear an ortho-substituted benzyl group at the quinuclidinic nitrogen¹⁰ and the hindered pivaloyl ester at C9.¹¹ *Remarkably, the cycloadduct* **4a** *was always obtained as a single diastereoisomer.* As shown in Table 1, when the reaction was performed in 10:1 toluene/CH₂Cl₂ at -30 °C with aqueous K₂CO₃ as the base, catalyst **6c** was identified as the

Table 1. Optimization of Reaction Conditions: RepresentativeResults a

entry	cat.	solvent	T (°C)	conv. (%) ^b	ee (%) ^c
1	6a	10:1 Tol/CH ₂ Cl ₂	-30	90	70
2	6b	10:1 Tol/CH ₂ Cl ₂	-30	90	75
3	6c	10:1 Tol/CH ₂ Cl ₂	-30	90	76
4	6d	10:1 Tol/CH ₂ Cl ₂	-30	90	70
5	6c	7:3 Tol/CH ₂ Cl ₂	-30	65	82
6	6c	3.5:3.5:3 Tol/TBME/CH ₂ Cl ₂	-30	>95	83
7^d	6c	3.5:3.5:3 Tol/TBME/CH ₂ Cl ₂	-42	>95	91

^{*a*} Reactions were performed on a 0.10 mmol scale using 2 equiv of **3a**, 10 mol % **6**, and 5 equiv of 50% (w/w) K₂CO₃(aq) in 1.0 mL of the solvent for 21–24 h. ^{*b*} Determined by ¹H NMR analysis. ^{*c*} Determined by chiral HPLC analysis after Boc deprotection and Cbz derivatization. ^{*d*} Using 2 mL of the solvent.

best one, giving the cycloadduct **4a** with modest enantioselectivity (entries 1–4). A beneficial effect on the asymmetric induction was obtained by increasing the amount of CH_2Cl_2 and adding TBME (entries 5 and 6). Whereas the larger amount of CH_2Cl_2 markedly increased the solubility of catalyst **6c**, TBME facilitated solubilization of sulfone **1a** in the mixture. Finally, lowering the temperature to -42 °C and diluting the reaction led to a further improvement in the enantioselectivity (entry 7).

With these conditions in hand, we evaluated the scope of the formal [3 + 2] cycloaddition (Table 2).¹² Several *N*-Boc sulfones 1a-j derived from aliphatic aldehydes reacted well with glutaconate **3a** to give the cycloadducts $4\mathbf{a} - \mathbf{j}$ with good results (entries 1 - 10), even on a preparative scale (entries 1 and 9). Because of the low efficiency of the available preparations of N-hydroxy-α-amido sulfones from aromatic aldehydes, 6c,13 only the two sulfones 1kand 11 were tested, giving the corresponding products 4k and 4l with moderate enantioselectivities (entries 11 and 12). Variation of the dipolarophile using glutaconates 3b-f in combination with sulfone 1a showed a considerable sensitivity of the reaction to the sterics of the diester used. In particular, while a simple increase in reaction time was sufficient for obtaining the cycloadducts 4m-o with good results (entries 13–15), the more hindered di-tert-butyl derivative 3e did not react with sulfone 1a, even at 0 °C (entry 16). To differentiate the two ester groups in the cycloadducts through a regioselective, sterically controlled Mannich reaction (Scheme 1), *tert*-butyl methyl glutaconate **3f** was reacted with **1a**. but this gave 4q in poor yield, only at 0 °C, and with a surprising lack of regioselectivity (entry 17).¹⁴

Finally this methodology was tested with Cbz as the protecting group, affording 5a-d with good results (entries 18-21). The

Table 2. Scope of the Catalytic Reaction^a

PG _N OH RSO ₂ Ph 1a-I : PG = Boc 2a-d : PG = Cbz		$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$						
entry	1/2	R	3	4/5	yield (%) ^b	ee (%) ^c		
1 ^d	1a	PhCH ₂ CH ₂	3a	4a	86 (86)	91 $(60)^{e}$		
2^{f}	1b	CH ₃	3a	4b	53	60 ^e		
3	1c	CH ₃ CH ₂	3a	4c	80	88 ^e		
4	1d	$CH_3(CH_2)_3$	3a	4d	70	92^e		
5	1e	CH ₃ (CH ₂) ₅	3a	4e	72	94^e		
6	1f	$(CH_3)_2CH$	3a	4f	93 (87)	99 (80) ^e		
7	1g	(CH ₃) ₂ CHCH ₂	3a	4g	97 (83)	98 $(57)^{e}$		
8	1ĥ	$c-C_5H_9$	3a	4h	97	99 ^e		
9^g	1i	$c - C_6 H_{11}$	3a	4i	>99 (98)	>99 (83) ^e		
10	1j	PhCH ₂	3a	4j	81	95 ^e		
11^{h}	1k	Ph	3a	4k	>99	67		
12	1l	$4-BrC_6H_4$	3a	41	63	60		
13^{i}	1a	PhCH ₂ CH ₂	3b	4m	60	91		
14^{i}	1a	PhCH ₂ CH ₂	3c	4n	76	94		
15^{i}	1a	PhCH ₂ CH ₂	3d	4o	73	95		
$16^{i,j}$	1a	PhCH ₂ CH ₂	3e	4p	<10	_		
$17^{i,j}$	1a	PhCH ₂ CH ₂	3f	4q	25^{k}	73^{l}		
18	2a	$(CH_3)_2CHCH_2$	3a	5a	60	75		
19	2b	$(CH_3)_2CH$	3a	5b	72	80		
20	2c	$c-C_{6}H_{11}$	3a	5c	>99	94		
21	2d	c-C ₅ H ₉	3a	5d	68	85		

^a Reactions were performed with 0.10 mmol of 1a-l or 2a-d, 0.20 mmol of 3a-f, 0.01 mmol of 6c, and 0.50 mmol of 50% (w/w) K₂CO₃(aq) in 3.5:3.5:3 Tol/TBME/CH2Cl2 (0.05 M) for 24 h. Results in parentheses refer to the opposite enantiomer, obtained using QD-6c as the catalyst. ^b Isolated yield. ^c Determined by chiral HPLC analysis. ^d On a 1.0 mmol scale. ^e Determined after Boc deprotection and Cbz derivatization. ^f Using 4.5:4.5:1 Tol/TBME/CH2Cl2 (0.10 M) for 48 h. g On a 5.0 mmol scale. ^h Using 10:1 Tol/CH₂Cl₂. ⁱ For 96 h. ^j At 0 °C. ^k Regioisomeric ratio: 60:40 (¹H NMR analysis). ¹ For the major regioisomer.

Scheme 2. Elaboration of the Cycloadducts

quasi-enantiomeric quinidine catalyst QD-6c gave access to the opposite enantiomer of the products, though with lower selectivities (values in parentheses in entries 1, 6, 7, and 9).¹⁵

The synthetic utility of the obtained isoxazolidines was first demonstrated by chemoselectively performing Boc deprotection and N-O cleavage. In fact, we were able to isolate the non-N-protected isoxazolidines 7a, 7f, and 7i in good yields by treatment with trifluoroacetic acid (TFA) in CH₂Cl₂ (Scheme 2, top) and the N-Bocprotected 1,3-aminoalcohol 10 using Mo(CO)₆ as the reducing agent¹⁶ (Scheme 2, middle). The highly substituted δ -lactam 11 could instead be obtained by hydrogenolysis of 5c, giving simultaneous N-Cbz deprotection and N-O cleavage, followed by a spontaneous lactamization (Scheme 2, bottom).

The relative and absolute configurations of the cycloadducts were determined by nuclear Overhauser effect NMR experiments and by theoretical calculations of the ECD spectra and $[\alpha]_D$ values using timedependent density functional theory performed on the tosyl derivative 8.¹⁷ X-ray analysis of the ferrocenoyl derivative 9 confirmed the correctness of this assignment (see the Supporting Information).

In summary, we have developed a novel organocatalytic process that uses simple reaction conditions and an inexpensive, readily available catalyst and gives access to N-Boc- and N-Cbz-protected isoxazolidines in generally good yields and enatioselectivities.

Acknowledgment. We acknowledge financial support from "Stereoselezione in Sintesi Organica Metodologie e Applicazioni" 2007. Financial support by the Merck-ADP Grant 2007 is also recognized. We thank M. Mancinelli for recording the ECD spectra.

Supporting Information Available: Assignment of the relative and absolute configurations of 4, X-ray data for 9, optimization results, experimental procedures, spectral data, and copies of ¹H and ¹³C NMR spectra for compounds 4, 5, 6c, QD-6c, and 7-11. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For a recent review, see: Merino, P. In Science of Synthesis, Vol. 27; Padwa,
- (1) For a recent review, see: Methody F. In Science of Symmetrix, Vol. 27, Fadwa, A., Ed.; Thieme: Stuttgart, Germany, 2004; p 511.
 (2) Fredrickson, M. Tetrahedron 1997, 53, 403.
 (3) For a review, see: (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun. 2000, 1449. For recent examples, see: (b) Palomo, C.; Oiarbide, M.; Arceo, E.; García, J. M.; López, R.; González, A.; Linden, A. Angew. Chem., Int. Ed. 2005, 44, 6187. (c) Evans, D. A.; Song, H.-J.; Fandrick, K. R. Org. *Lett.* **2005**, *47*, 0107. (c) Evans, D. A., Song, H.S., Fandrick, R. K. Org. *Lett.* **2006**, *8*, 3351. (d) Sibi, M. P.; Ma, Z.; Jasperse, C. P. *J. Am. Chem. Soc.* **2004**, *126*, 718. (e) Kano, T.; Hashimoto, T.; Maruoka, K. *J. Am. Chem. Soc.* **2005**, *127*, 11926. (f) Jiao, P.; Nakashima, D.; Yamamoto, H. *Angew. Chem., Int. Ed.* **2008**, *47*, 2411.
- (4) For an oxidatively removable N-diphenylmethyl group, see: (a) Hashimoto, T.; Omote, M.; Kano, T.; Maruoka, K. Org. Lett. 2007, 9, 4805. For carbohydrate derivatives as hydrolytically removable chiral auxiliaries, see: (b) Vasella, A. Helv. Chim. Acta 1977, 60, 1273.
- (5) (a) Chiacchio, U.; Balestrieri, E.; Macchi, B.; Iannazzo, D.; Piperno, A.; Rescifina, A.; Romeo, R.; Saglimbeni, M.; Sciortino, M. T.; Valveri, V.; Mastino, A.; Romeo, G. J. Med. Chem. 2005, 48, 1389. (b) Rowe, S. P.; Casey, R. J.; Brennan, B. B.; Buhrlage, S. J.; Mapp, A. K. J. Am. Chem. Soc. 2007, 129, 10654.
- (a) Hussain, S. A.; Sharma, A. H.; Perkins, M. J.; Griller, D. J. Chem. (6)Soc., Chem. Commun. 1979, 289. (b) Partridge, K. M.; Anzovino, M. E.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 2920. (c) Guinchard, X.; Vallée, Y.; Denis, J.-N. Org. Lett. 2005, 7, 5147. (a) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernardi, L.; Ricci,
- (7)(a) Ini, I., Sgaran, V., Ferdstein, D., Herta, K.F., Denath, E., Ricei, A. Angew. Chem., Int. Ed. **2005**, 44, 7975. (b) Palomo, C.; Oiarbide, M.; Laso, A.; López, R. J. Am. Chem. Soc. **2005**, 127, 17622.
- (8)For organocatalytic cycloadditions of nitrones, see: (a) [3 + 3]: Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416. (b) [3 + 2]: Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874.
- (9) For example, a catalyst related to 6d (Table 1) but bearing the free OH gave the product with 15% ee (see the Supporting Information). Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; Park, H.-g.; Jew, S.-S. Org. Lett. 2005,
- (10)7, 1129.
- (11)Poulsen, T. B.; Bernardi, L.; Bell, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 6551
- (12) In every case, a single diastereoisomer was observed by ¹H NMR analysis of the crude mixture.
- (13) 1k and 1l were prepared in low (<20%) yield according to ref 6c. Use of this method (PhSO₂Na, HCOOH, H₂O/MeOH or THF) or other procedures effective for α -amido sulfones (CH₂Cl₂, PhSO₂H; PhSO₂Na, HCOOH, MeOH/H₂O, 70 °C), other aromatic aldehydes (2-bromobenzaldehyde, anisaldehyde), or a tertiary aliphatic aldehyde (pivalaldehyde) failed to give the expected N-hydroxy- α -amido sulfones.
- (14) This result seems to suggest that the two ester groups are not as independent as assumed in the simplified two-step pathway depicted in Scheme 1, although ¹H NMR analysis of the crude products 4b-e revealed the presence of small amounts (<7 mol %) of the linear non-cyclized products (adduct C in Scheme 1).
- (15) Other catalysts related to QD-6c gave similar or worse results (see the Supporting Information). For a recent example of a PTC reaction where quasi-enantiomeric Cinchona catalysts display very different behavior, see: Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. **2007**, 129, 6394.
- (16) Kudoh, T.; Ishikawa, T.; Shimizu, Y.; Saito, S. Org. Lett. 2003, 5, 3875.
- (17) For a review of the use of this method to assign the absolute configurations of organic molecules, see: Bringmann, G.; Bruhn, T.; Maksimenka, K.; Hemberger, Y. Eur. J. Org. Chem. 2009, 2717. For leading references, see the Supporting Information.

JA902458M